Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study.
نویسندگان
چکیده
Whereas there is clear evidence for a strong influence of bone quantity (i.e., bone mass or bone mineral density) on vertebral mechanical behavior, there are fewer data addressing the relative influence of cortical and trabecular bone microarchitecture. The aim of this study was to determine the relative contributions of bone mass, trabecular microarchitecture, and cortical thickness and curvature to the mechanical behavior of human lumbar vertebrae. Thirty-one L3 vertebrae (16 men, 15 women, aged 75 +/- 10 years and 76 +/- 10 years, respectively) were obtained. Bone mineral density (BMD) of the vertebral body was assessed by lateral dual energy X-ray absorptiometry (DXA), and 3D trabecular microarchitecture and anterior cortical thickness and curvature was assessed by micro-computed tomography (microCT). Then compressive stiffness, work to failure, and failure load were measured on the whole vertebral body. BMD was correlated with compressive stiffness (r = 0.60), failure load (r = 0.70), and work to failure (r = 0.55). Except for the degree of anisotropy, all trabecular and cortical parameters were correlated with mechanical behavior (r = 0.36 to 0.58, p = .05 to .001, and r = 0.36 to 0.61, p = .05 to .0001, respectively). Stepwise and multiple regression analyses indicated that the best predictor of (1) failure load was the combination of BMD, structural model index (SMI), and trabecular thickness (Tb.Th) (R = 0.80), (2) stiffness was the combination of BMD, Tb.Th, and curvature of the anterior cortex (R = 0.82), and (3) work to failure was the combination of anterior cortical thickness and BMD (R = 0.68). Our data imply that measurements of cortical thickness and curvature may enhance prediction of vertebral fragility and that therapies that improve both vertebral cortical and trabecular bone properties may provide a greater reduction in fracture risk.
منابع مشابه
Load sharing within a human thoracic vertebral body: an in vitro biomechanical study.
OBJECTIVE The vertebral body is the major load bearing part of the vertebra and consists of a central trabecular core surrounded by a thin cortical shell. The aim of this in vitro biomechanical study is to determine the debated issue of load sharing in a vertebral body. METHODS A series of non-destructive compressive testing on excised human thoracic vertebral bodies were performed. The testi...
متن کاملGender specific LRP5 influences on trabecular bone structure and strength.
A mutation in LRP5 (low-density lipoprotein receptor-related protein 5) has been shown to increase bone mass and density in humans and animals. Transgenic mice expressing the LRP5 mutation (G171V) demonstrate an increase in bone mass as compared to non-transgenic (NTG) littermates. This study evaluated LRP5 gene and gender-related influences on the structural and biomechanical strength properti...
متن کاملLong-term treatment with odanacatib maintains normal trabecular biomechanical properties in ovariectomized adult monkeys as demonstrated by micro-CT-based finite element analysis
The cathepsin K inhibitor odanacatib (ODN) is a potent and reversible inhibitor of osteoclastic resorption activity. This drug is currently under development for the treatment of postmenopausal osteoporosis. Previously, we described data on the treatment efficacy of ODN in a preclinical estrogen-deficient model of an ovariectomized (OVX) rhesus monkey using HR-pQCT based finite element analysis...
متن کاملEvaluation of the Effect of Ursolic Acid Compared with Ibuprofen and Dexamethasone in Synoviocyte Model for Osteoarthritis: an Ex Vivo Study
Background: Osteoarthritis is one of the most commonly diagnosed malignant diseases in the world and was previously recognized as a degenerative joint disease characterized by cartilage deformity and the formation of new bones at the edges of the joint. But this disease is not just a degenerative disease but also a biomechanical, biochemical, and cellular phenomenon. Common treatments include s...
متن کاملبررسی هیستو مورفومتریک استخوان اسفنجی مهره دمی رت در طی آبستنی
Pregnancy make demands upon maternal calcium hemeostasis and the extent to which the maternal bone mass is effected remains uncertain. Recently changes in the bone mass during human pregnancy have been associated also with the transformation of the cancellous architecture and the bone surface available for exchange. These jistomorphometrical structural changes were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2010